

Fig. 3. Projections of (a) the α-trans- $\mathrm{UO}_{2} \mathrm{Cl}_{2}(\text { tppo })_{2}$ form and (b) the β-trans $-\mathrm{UO}_{2} \mathrm{Cl}_{2}(\mathrm{tppo})_{2}$ form along the $\mathrm{Cl}-\mathrm{U}-\mathrm{Cl}$ bonds.

Selected bond lengths and angles (Table 3) show that the distances about the U atom are equivalent within e.s.d.'s for the cis and β-trans structures. The distances are also in agreement with the α-trans structure (Bombieri, Forsellini, Day \& Azeez, 1978) and a search of the Cambridge Structural Database (Table 3).

The angle at the bridging O atom of the triphenyl phosphine oxide ligand is found to be lowest for the cis form, $144 \cdot 5^{\circ}$, compared with values from 154 to 167° observed in the data search and is probably due to steric hindrance between the adjacent bulky ligands. The values observed in the β-trans structure of 151.7 and $166 \cdot 2^{\circ}$ are assumed to be different only because of packing constraints.

In the paper by Bombieri et al. (1978) on the α-trans $-\mathrm{UO}_{2} \mathrm{Cl}_{2}$ (tppo) ${ }_{2}$ structure the probability of the cis form being determined was anticipated. The determination of the new β-trans- $\mathrm{UO}_{2} \mathrm{Cl}_{2}(\mathrm{tppo})_{2}$ structure suggests that there may be more structure forms dependent only upon conditions of crystallization.

References

Bombieri, G., Forsellini, E., Day, J. P. \& Azeez, W. I. (1978). J. Chem. Soc. Dallon Trans. pp. 677-680.
Cambridge Structural Database (1988). Univ. Chemical Laboratory, Lensfield Road, Cambridge, England.
Day, J. P. \& Venanzi, L. M. (1966). J. Chem. Soc. A, pp. 1363-1367.
Gans, P. \& Smith, B. C. (1964). J. Chem. Soc. pp. 4172-4176.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Mallinson, P. R. \& Muir, K. W. (1985). J. Appl. Cryst. 18, 51-53.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for solution of crystal structures. Univ. of Göttingen, Federal Republic of Germany.

Acta Cryst. (1991). C47, 48-51

Structure of Tetraphenylarsonium Bis(1,2-dithiooxalato-S,S')palladate(II)

By Pascual Román,* Juan M. Gutiérrez-Zorrilla, Antonio Luque, Javier I. Beitia and Carmen Guzmán-Miralles
Departamento de Quimica Inorgánica, Universidad del Pais Vasco, Apartado 644, 48080 Bilbao, Spain
and Martín Martínez-Ripoll
UEI Cristalografía, CSIC, Serrano 113, 28006 Madrid, Spain

(Received 12 March 1990; accepted 20 June 1990)

```
Abstract. \(\left[\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]_{2}\left[\mathrm{Pd}\left(\mathrm{C}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}\right)_{2}\right], \quad M_{r}=1113 \cdot 37\), triclinic, \(\quad P \overline{1}, \quad a=11 \cdot 101\) (7) \(, \quad b=13 \cdot 316(5), \quad c=\) 18.485 (8) \(\AA, \quad \alpha=110.90\) (5),\(\quad \beta=77.74\) (8), \(\quad \gamma=\) 106.28 ( 8\()^{\circ}, V=2431(2) \AA^{3}, Z=2, D_{m}=1.53\) (1), \(D_{x}=1.52 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \alpha)=0.71069 \AA, \quad \mu=\)
* To whom correspondence should be addressed.
```

0108-2701/91/010048-04\$03.00
$19.317 \mathrm{~cm}^{-1}, T=296 \mathrm{~K}, \quad F(000)=1120, R=0.041$, $w R=0.045$ for 5034 observed reflections with $I>$ $3 \sigma(I)$. The asymmetric unit of the title compound contains one discrete complex $\left[\mathrm{Pd}\left(\mathrm{C}_{2} \mathrm{~S}_{2} \mathrm{O}_{2}\right)_{2}\right]^{2-}$ anion and two $\left[\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]^{+}$cations linked through electrostatic interactions and hydrogen contacts of type C-H \cdots.

[^0]Introduction. In recent years many works have been published on the coordination chemistry and characterization of the dithiooxalate ligand showing some interesting points. Thus, the dithiooxalate has the highest ligand field strength of all geminal and vicinal ligands (Latham, Hascall \& Gray, 1965). The presence of four donor atoms in the dithiooxalate dianion and the possibilities of charge delocalization on any two of these atoms result in a multifunctional ligand with unique coordination properties (Coucouvanis, 1970). X-ray structure determinations demonstrate the ability of the dithiooxalate ligand to coordinate to the central metal ion by two S or two O donor atoms, respectively; furthermore, dithioxalate may coordinate simultaneously to more than one metal ion in polynuclear complexes (Coucouvanis, Baenzinger \& Johnson, 1973; Gleizes \& Verdaguer, 1984; Frasse, 1985). In this paper we describe the X-ray structure of $\left[\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]_{2}\left[\mathrm{Pd}\left(\mathrm{C}_{2} \mathrm{~S}_{2} \mathrm{O}_{2}\right)_{2}\right]$.

Experimental. Tetraphenylarsonium bis(dithiooxalato)palladate(II) was obtained by mixing aqueous solutions of potassium bis(dithiooxalato)palladate(II) and tetraphenylarsonium chloride. Yellow prismatic crystals were grown by slow evaporation of a dichloromethane solution of the complex. A crystal with approximate dimensions $0 \cdot 10 \times 0 \cdot 12 \times 0.20 \mathrm{~mm}$ was analyzed at 296 K with an Enraf-Nonius CAD-4 diffractometer, utilizing graphite-monochromated Mo $K \alpha$ radiation.

Unit-cell parameters were obtained from a leastsquares fitting of the setting angles for 25 reflections with $19 \leq 2 \theta \leq 21^{\circ}$. Reflections were scanned in the $\omega / 2 \theta$ mode, $2 \theta_{\text {max }}=50^{\circ}$, reflections with indices $h 0$ $\rightarrow 12, k \pm 15, l \pm 21$ collected. During the data collection, two reference reflections ($\overline{1} 48, \overline{1} 17$) were monitored every 100 reflections. No crystal decay was observed. Data were corrected for Lorentzpolarization. 8383 unique reflections ($R_{\text {int }}=0.018$), 5034 with $I>3 \sigma(I)$ were used in the refinement. The positions of Pd and As atoms were located on a Patterson map, the remaining non-H atoms of the structure being located on successive Fourier syntheses. An empirical absorption ($\mu=19.317 \mathrm{~cm}^{-1}$) correction following the DIFABS procedure (Walker \& Stuart, 1983) was applied to isotropically refined data. The structure was then refined anisotropically. H atoms were located from difference Fourier syntheses and were isotropically refined. A weighting scheme of type $w=w_{1} w_{2}$ with $w_{1}=k_{1} /\left(a+b\left|F_{o}\right|+\right.$ $\left.c\left|F_{o}\right|^{2}\right)^{2}$ and $w_{2}=k_{2} /\left(d+e \sin \theta / \lambda+f \sin ^{2} \theta / \lambda\right)^{2}$ was used to obtain flat dependence in $\left\langle w \Delta^{2} F\right\rangle$ vs $\left\langle F_{o}\right\rangle$ and vs $\langle\sin \theta / \lambda\rangle$ (Martínez-Ripoll \& Cano, 1975); the coefficients used are $k_{1}=0.607, k_{2}=1 \cdot 157, a=2.989, b$ $=0.066, c=0.000$ for $\left|F_{o}\right| \leq 11.63 ; a=6.790, b=$ $-0.330, c=0.005$ for $11.63<\left|F_{o}\right| \leq 41.43 ; \quad a=$ $1.391, b=-0.003, c=0.000$ for $\left|F_{o}\right|>41.43 ; d=$

Table 1. Fractional atomic coordinates and equivalent isotropic temperature parameters $\left(\AA^{2}\right)$ with e.s.d.'s in parentheses

	$U_{\mathrm{eq}}=\frac{1}{3} \sum\left[U_{i j} a_{i}^{*} a_{j}^{*} a_{i} a_{j} \cos \left(\mathbf{a}_{i} \cdot \mathbf{a}_{j}\right)\right]$.			
	x	\boldsymbol{y}	z	$U_{\text {eq }}$
Pd	0.03440 (5)	$0 \cdot 15638$ (4)	-0.24119 (3)	0.042 (3)
As(1)	0.36891 (6)	$0 \cdot 23569$ (5)	-0.04459 (4)	0.039 (3)
As(2)	0.75978 (6)	$0 \cdot 32053$ (5)	0.44146 (4)	$0 \cdot 038$ (3)
S(1)	-0.05268 (21)	-0.02985 (16)	-0.27477 (14)	0.071 (1)
S(2)	-0.14512 (18)	$0 \cdot 18860$ (17)	-0.15597 (13)	0.067 (9)
S(3)	$0 \cdot 11921$ (18)	0.34255 (15)	-0.21571 (1])	0.058 (8)
S(4)	0.21213 (20)	$0 \cdot 12178$ (16)	-0.32699 (13)	0.067 (9)
$\mathrm{O}(1)$	$-0.2611(6)$	-0.1329 (6)	-0.2148 (5)	$0 \cdot 106$ (4)
O(2)	-0.3463 (5)	0.0471 (5)	-0.1224 (4)	0.078 (3)
$\mathrm{O}(3)$	$0 \cdot 2903$ (6)	0.4358 (5)	-0.3057 (4)	0.079 (3)
O(4)	0.3814 (7)	0.2557 (5)	-0.3883 (4)	0.105 (4)
$\mathrm{C}(1)$	-0.1927 (7)	-0.0429 (7)	-0.2144 (5)	0.061 (4)
C(2)	-0.2414 (7)	0.0593 (7)	-0.1596 (4)	0.056 (4)
C(3)	0.2384 (7)	0.3492 (6)	-0.2916 (4)	0.052 (3)
C(4)	0.2863 (8)	0.2458 (7)	-0.3405 (4)	0.065 (4)
C(111)	0.2423 (6)	0.3205 (5)	0.0006 (4)	0.041 (3)
C(112)	0.2765 (6)	0.4255 (6)	0.0528 (4)	0.051 (3)
C(113)	0.1877 (8)	0.4912 (6)	0.0834 (4)	0.055
C(114)	0.0679 (7)	0.4528 (7)	0.0613 (4)	0.053 (3)
C(115)	0.0368 (7)	$0 \cdot 3500$ (8)	0.0096 (5)	0.066 (4)
C(116)	0.1214 (6)	0.2817 (6)	-0.0208 (4)	0.054 (3)
C(121)	0.4574 (6)	0.2776 (5)	-0.1339 (4)	0.042 (3)
C(122)	0.4380 (6)	0.3662 (6)	-0.1478 (4)	0.049 (3)
C(123)	0.5068 (8)	0.3974 (6)	-0.2107 (5)	0.057 (3)
C(124)	0.5946 (8)	0.3409 (7)	-0.2597 (5)	0.062 (4)
C(125)	0.6139 (9)	0.2520 (8)	-0.2450 (5)	0.086 (5)
C(126)	0.5448 (8)	0.2195 (7)	-0.1827 (5)	0.070 (4)
C(131)	0.4805 (6)	0.2774 (5)	0.0327 (4)	0.039 (3)
C(132)	0.4335 (7)	0.2626 (6)	0.1042 (4)	0.055 (3)
C(133)	0.5115 (10)	0.2974 (7)	$0 \cdot 1626$ (5)	0.072 (4)
C(134)	0.6359 (9)	0.3536 (7)	0.1485 (6)	0.072 (4)
C(135)	0.6808 (7)	0.3667 (7)	0.0782 (6)	0.066 (4)
C(136)	0.6051 (6)	0.3302 (6)	0.0187 (5)	0.055
C(141)	0.2949 (6)	0.0822 (5)	-0.0743 (4)	0.042 (3)
C(142)	0.2195 (8)	0.0357 (6)	-0.1354 (4)	0.059 (3)
C(143)	0.1601 (9)	-0.0742 (7)	-0.1529 (5)	0.074 (4)
C(114)	0.1741 (10)	-0.1371 (6)	-0.1122 (6)	0.083 (4)
C(145)	0.2499 (11)	-0.0928 (7)	-0.0534 (6)	0.088 (5)
C(146)	0.3089 (9)	0.0177 (6)	-0.0330 (5)	0.069 (4)
C(211)	0.8918 (6)	0.3479 (5)	0.3613 (4)	0.042 (3)
C(212)	0.8771 (7)	0.4052 (6)	0.3145 (4)	0.052 (3)
C(213)	0.9716 (8)	0.4230 (6)	0.2559 (4)	0.061 (4)
C(214)	1.0799 (9)	0.3844 (7)	0.2442 (5)	0.071 (4)
$\mathrm{C}(215)$	1.0951 (8)	0.3282 (7)	0.2899 (5)	0.070 (4)
$\mathrm{C}(216)$	0.9996 (7)	0.3096 (6)	0.3484 (4)	0.052
C(221)	0.8243 (6)	$0 \cdot 2639$ (5)	0.5043 (4)	0.040 (3)
$\mathrm{C}(222)$	0.8682 (7)	0.3321 (6)	0.5736 (4)	0.050 (3)
C(223)	0.9185 (8)	0.2877 (7)	0.6151 (4)	0.063 (4)
C(224)	0.9251 (8)	0.1789 (7)	0.5874 (5)	0.068 (4)
C(225)	0.8814 (9)	$0 \cdot 1122$ (7)	0.5185 (5)	0.068 (4)
C(226)	0.8274 (7)	0.1535 (6)	0.4760 (4)	0.056 (3)
C(231)	0.6209 (6)	0.2099 (5)	0.3964 (4)	0.045 (3)
C(232)	0.5284 (8)	0.1597 (6)	0.4441 (5)	0.062 (4)
C(233)	0.4265 (9)	0.0812 (7)	0.4124 (6)	0.074 (4)
C(234)	0.4146 (9)	0.0520 (7)	0.3328 (6)	0.070 (4)
C(235)	0.5070 (8)	$0 \cdot 1007$ (7)	0.2871 (6)	0.067 (4)
C(236)	0.6109 (7)	0.1797 (6)	0.3174 (4)	0.053 (3)
C(241)	0.7097 (6)	0.4556 (5)	$0 \cdot 5040$ (4)	0.044 (3)
C(242)	0.5985 (7)	0.4513 (7)	0.5558 (4)	0.052 (3)
C(243)	0.5649 (8)	0.5491 (7)	0.6025 (5)	0.064 (4)
C(244)	0.6380 (8)	0.6499 (7)	0.5961 (5)	0.065 (4)
C(245)	0.7435 (9)	0.6510 (7)	0.5427 (5)	0.069 (4)
C(246)	0.7809 (8)	0.5555 (6)	0.4964 (5)	0.057 (3)

$6 \cdot 859, e=-34 \cdot 435, f=48.541$ for $\sin \theta / \lambda \leq 0 \cdot 42, d=$ $21.875, e=-87.906, f=93.344$ for $0.42<\sin \theta / \lambda \leq$ $0.54 ; d=1.654, e=-1.084, f=0.000$ for $\sin \theta / \lambda>$ $0 \cdot 54$. Final refinement gave the discrepancy indices R $=0.041, \quad w R=0.045$. Max. $\quad \Delta / \sigma=0.69, \quad \Delta \rho=$ $2.5 \mathrm{e} \AA^{-3}$ near Pd atom. Neutral-atom scattering factors and anomalous-dispersion corrections were taken from International Tables for X-ray Crystallography (1974, Vol. IV, pp. 72-98). Most calculations

Table 2. Main interatomic distances (\AA) and bond angles $\left({ }^{\circ}\right)$ in $\left[\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]_{2}\left[\mathrm{Pd}\left(\mathrm{C}_{2} \mathrm{~S}_{2} \mathrm{O}_{2}\right)_{2}\right]$

Bis(dithiooxalato)palladate(II) anion

$\mathbf{P d}-\mathbf{S}(1)$	$2 \cdot 298$ (3)	S(4)-C(4)	1.707 (9)
$\mathrm{Pd}-\mathrm{S}(2)$	$2 \cdot 302$ (3)	$\mathrm{C}(1)-\mathrm{O}(1)$	$1 \cdot 22$ (1)
$\mathrm{Pd}-\mathrm{S}(3)$	$2 \cdot 302$ (3)	$\mathrm{C}(2)-\mathrm{O}(2)$	$1-220$ (9)
$\mathrm{Pd}-\mathbf{S}(4)$	2.298 (3)	$\mathrm{C}(3)-\mathrm{O}(3)$	$1 \cdot 23$ (1)
$\mathrm{S}(1)-\mathrm{C}(1)$	1.715 (8)	$\mathrm{C}(4)-\mathrm{O}(4)$	1.23 (1)
$\mathrm{S}(2)-\mathrm{C}(2)$	1.740 (8)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.54 (1)
$\mathrm{S}(3)-\mathrm{C}(3)$	1.721 (7)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.52 (1)

$\mathrm{S}(1)-\mathrm{Pd}-\mathrm{S}(2)$	89.5 (3)		$\mathrm{S}(2)-\mathrm{C}(2)-\mathrm{O}(2) \quad 12$		22.7 (8)
$\mathrm{S}(1)-\mathrm{Pd}-\mathrm{S}(3)$	$176 \cdot 1$ (2)		$\mathrm{S}(3)-\mathrm{C}(3)-\mathrm{O}(3) \quad 122$		122.3 (7)
$\mathrm{S}(1)-\mathrm{Pd}-\mathrm{S}(4)$	89.7 (2)		$\mathrm{S}(4)-\mathrm{C}(4)-\mathrm{O}(4) \quad 12$		21.8 (8)
$\mathrm{S}(2)-\mathrm{Pd}-\mathrm{S}(3)$	91.6 (2)		$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(2) \quad 1$		21.0 (8)
$\mathbf{S}(2)-\mathrm{Pd}-\mathrm{S}(4)$	$179 \cdot 2$ (3)		$\mathrm{S}(2)-\mathrm{C}(2)-\mathrm{C}(1) \quad 1$		17.9 (7)
$\mathbf{S}(3)-\mathrm{Pd}-\mathrm{S}(4)$	89.1 (2)		$\mathrm{S}(3)-\mathrm{C}(3)-\mathrm{C}(4) \quad 1$		$19 \cdot 1$ (7)
$\mathrm{Pd}-\mathrm{S}(1)-\mathrm{C}(1)$	$105 \cdot 3$ (4)		$\mathrm{S}(4)-\mathrm{C}(4)-\mathrm{C}(3) \quad 120$		20.4 (7)
$\mathrm{Pd}-\mathrm{S}(2)-\mathrm{C}(2)$	$106 \cdot 0$ (4)		$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$		16.7 (9)
$\mathrm{Pd}-\mathrm{S}(3)-\mathrm{C}(3)$	$103 \cdot 7$ (4)		$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(1)$		19.4 (9)
$\mathrm{Pd}-\mathrm{S}(4)-\mathrm{C}(4)$	$104 \cdot 2$ (4)		$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4) \quad 1$		18.5 (8)
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	122.2 (8)		$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(3)$		117.7 (9)
Tetraphenylarsonium cations					
X		$\mathrm{X}=2$		$\mathrm{X}=1$	$\mathrm{X}=2$
As(X)-C(X11) 1.915		1.909 (7)	As(X)-C(X31)	1.920 (7)	1.908 (6)
$\mathrm{As}(\mathrm{X})-\mathrm{C}(\mathrm{X} 2 \mathrm{l}) \quad 1.914$		1.927 (8)	$\mathrm{As}(\mathrm{X})-\mathrm{C}(\mathrm{X41})$	$1 \cdot 898$ (6)	1.919 (7)
Hydrogen contacts					
$\mathrm{C}(126)-\mathrm{H}(126) \cdots \mathrm{O}(2)$	i	0.83 (8)	2.64 (8) 3.4	3.45 (1)	169 (6)
$\mathrm{C}(132)-\mathrm{H}(132) \cdots \mathrm{O}(1)$	ii	0.88 (6)	2.53 (7) 3 .	$3 \cdot 14$ (1)	127 (6)
$\mathrm{C}(133)-\mathrm{H}(133) \cdots \mathrm{O}(1)$	ii	0.99 (7)	2.56 (6) 3.23	$3 \cdot 23$ (1)	124 (5)
$\mathrm{C}(212)-\mathrm{H}(212) \cdots \mathrm{O}(3)$	iii	0.99 (7)	2.34 (8) 3.	$3 \cdot 25$ (1)	152 (5)
$\mathrm{C}(215)-\mathrm{H}(215) \cdots \mathrm{O}(1)$	iv	0.9 (1)	2.5 (1) 3	$3 \cdot 33$ (1)	142 (8)
$\mathrm{C}(232)-\mathrm{H}(232) \cdots \mathrm{O}(4)$	v	1.06 (8)	2.48 (7) 3.	$3 \cdot 18$ (1)	122 (5)
$\mathrm{C}(242)-\mathrm{H}(242) \cdots \mathrm{O}(4)$	v	0.9 (1)	2.52 (9) 3.	$3 \cdot 32$ (1)	142 (8)
$\mathrm{C}(243)-\mathrm{H}(243) \cdots \mathrm{O}(3)$	v	0.95 (9)	2.54 (9) 3	$3 \cdot 39$ (1)	149 (8)

Symmetry codes: (i) $1+x, y, z$; (ii) $-x,-y,-z$; (iii) $1-x, 1-y,-z$; (iv) $1-x,-y,-z$; (v) $x, y, 1+z$.
were carried using the XRAY76 System (Stewart, Machin, Dickinson, Ammon, Heck \& Flack, 1976) running on a MicroVAX II computer.

Discussion. Atomic coordinates and equivalent isotropic temperature factors of non-H atoms are given in Table 1.* Bond lengths and angles are listed in Table 2. The atomic arrangement comprises one non-centrosymmetric $\left[\operatorname{Pd}\left(\mathrm{C}_{2} \mathrm{~S}_{2} \mathrm{O}_{2}\right)_{2}\right]^{2-}$ anion and two crystallographically independent $\left[\operatorname{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]^{+}$ cations. Fig. 1 shows the atomic numbering scheme used for the bis(dithiooxalato)palladate(II) anion. A unit-cell diagram is presented in Fig. 2.

The Pd atom is coordinated to two dithiooxalate ligands through the S atoms located at the corners of a quasi-square parallelogram. The angles between the plane determined by Pd and S atoms and the dithiooxalate ligand planes are 1.8 and 17.5°; this last value indicates that the anion deviates significantly from planarity. This deviation is due to the hydrogen contacts of type C-H $\cdots \mathrm{O}$ (Taylor \& Kennard, 1982)

[^1]between three rings attached to $\operatorname{As}(2)$ and the O atoms $\mathrm{O}(3)$ and $\mathrm{O}(4)$; the contacts are: $\mathrm{C}(212) \cdots \mathrm{O}(3)$, $\mathrm{C}(232) \cdots \mathrm{O}(4), \quad \mathrm{C}(242) \cdots \mathrm{O}(4)$, and $\mathrm{C}(243) \cdots \mathrm{O}(3)$ (Table 2). So C(212) and C(232) atoms are placed at 2.92 and $1.61 \AA$ below the mean plane defined by the $\mathrm{Pd}, \mathrm{S}(1), \mathrm{S}(2), \mathrm{S}(3), \mathrm{S}(4), \mathrm{C}(1), \mathrm{C}(2), \mathrm{C}(3), \mathrm{C}(4), \mathrm{O}(1)$ and $O(2)$ anion atoms, respectively. Meanwhile, O (3) and $O(4)$ are in the same plane defined by the ring containing atoms $\mathrm{C}(242)$ and $\mathrm{C}(243)$. The study of an indium dithiooxalate complex with tetraphenylarsonium as cation also shows a strong distortion in the dithiooxalate ligands (Golic, Bulc \& Dietzsch, 1982).

We have observed in related salts of nickel dithiooxalate with organic planar cations (Enjalbert, Gleizes, Trombe, Gutiérrez-Campo \& Román, 1985) that packing of anions and cations follows the sequences acac or acca (where $a=$ anion, $c=$ cation). In the present compound anions and cations are disposed in a different way due to the non-planarity and high volume of these cations.

The generous support given by Iberduero, SA is gratefully acknowledged.

Fig. 1. Front and side views of the bis(dithiooxalato)palladate(II) anion with atom labelling.

Fig. 2. Stereoview packing diagram for $\left[\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]_{2}\left[\mathrm{Pd}\left(\mathrm{C}_{2} \mathrm{~S}_{2} \mathrm{O}_{2}\right)_{2}\right]$.

References

Coucouvanis, D. (1970). J. Am. Chem. Soc. 92, 707-709.
Coucouvanis, D., Baenzinger, N. C. \& Johnson, S. M. (1973). J. Am. Chem. Soc. 95, 3875-3886.

Enjalbert, R., Gleizes, A., Trombe, J.-C., Gutiérrez-Campo, M. L. \& Román, P. (1985). J. Mol. Struct. 131, 1-10.

Frasse, C. (1985). PhD Thesis, Univ. Paul Sabatier of Toulouse, France.
Gleizes, A. \& Verdaguer, M. (1984). J. Am. Chem. Soc. 106, 3727-3737.
Golic, L., Bulc, N. \& Dietzsch, W. (1982). Inorg. Chem. 21, 3560-3562.

Latham, A. R., Hascall, V. C. \& Gray, H. B. (1965). Inorg. Chem. 4, 788-792.
Martínez-Ripoll, M. \& Cano, F. H. (1975). PESOS. Program for the automatic treatment of weighting schemes for leastsquares refinement. Instituto Rocasolano, CSIC, Madrid, Spain.
Stewart, J. M., Machin, P. A., Dickinson, C. W., Ammon, H. L., Heck, H. \& Flack, H. (1976). The XRAY76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.
Taylor, R. \& Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1991). C47, 51-53

Structure of Bis(tetraethylammonium) Hexaiododimercurate(II) Diiodomercury(II)

By J. Fábry*
Institute of Physics, Czechoslovak Academy of Sciences, Na Slovance 2, 180 40, Praha 8, Czechoslovakia
and B. A. Maximov
Institute of Crystallography, Academy of Sciences of the USSR, Leninsky Prospekt 59, Moscow, USSR

(Received 14 February 1990; accepted 13 June 1990)

Abstract

N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}\right]_{2}\left[\mathrm{Hg}_{2} \mathrm{I}_{6}\right] \cdot \mathrm{HgI}_{2}, \quad M_{r}=1781 \cdot 53\), tetragonal, $P 4_{2} / m, a=10.391$ (1), $c=17.051$ (1) \AA, $V=1841 \cdot 4 \AA^{3}, Z=2, D_{x}=3.386 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)$ $=0.71073 \AA, \mu=195.23 \mathrm{~cm}^{-1}, F(000)=1628, T=$ $293 \mathrm{~K}, R=0.0468$ for 1201 observed reflections. The structure consists of two crystallographically independent tetraethylammonium cations, a linear centrosymmetric HgI_{2} molecule $[\mathrm{Hg}-\mathrm{I}$ bond length is 2.574 (1) $\AA]$ and a dimeric anion $\left[\mathrm{Hg}_{2} \mathrm{I}_{6}\right]^{2-}$. There are two van der Waals contacts between the Hg atom of HgI_{2} and two iodines from $\left[\mathrm{Hg}_{2} \mathrm{I}_{6}\right]^{2-}[3 \cdot 547$ (2) \AA §] and two I-I van der Waals contacts [3.769 (2) \AA] between iodines of HgI_{2} and $\left[\mathrm{Hg}_{2} \mathrm{I}_{6}\right]^{2-}$. The latter are considerably shorter than the van der Waals I $\cdots \mathrm{I}$ distance ($4 \cdot 3 \AA$).

Introduction. Previous studies have shown that the characteristic coordination of mercury by I atoms (Grdenić, 1965), which is in most cases distorted, is digonal, (rarely) trigonal and tetrahedral. In addition, it has often been observed that Hg atoms tend to be surrounded by further more-distant iodines. These iodines together with those involved in the characteristic coordination usually surround Hg in the form of a distorted regular object, such as an octahedron or a trigonal bipyramid. Structures

[^2]0108-2701/91/010051-03\$03.00
which contain Hg which is tetrahedrally coordinated by iodine may be separated into three groups: (a) with isolated molecules HgI_{4}^{-}, (b) with dimeric molecules $\mathrm{Hg}_{2} \mathrm{I}_{6}^{2-}$ which consist of two edge-shared coordination tetrahedra and (c) Hg -I polymers with corner-shared tetrahedra. The aim of the present work was to establish the structure of the title compound and to compare it with related ones.

Experimental. The title compound was one of the products of the reaction of tetraethylammonium iodide with mercury(II) iodide in petroleum ether. Yellow crystals were prepared by subsequent recrystallization from propanone.

Sphere-ground crystal ($R=0.162 \mathrm{~mm}$), $\mu R=$ 3.173, Enraf-Nonius CAD-4F diffractometer, $50 \mathrm{kV} /$ 30 mA , graphite-monochromated Mo $K \alpha$. Lattice parameters from least-squares refinement of 25 reflections ($15.30<\theta<17.30^{\circ}$). $\omega / 2 \theta$ scan mode, ω $=(1 \cdot 30+1 \cdot 05 \tan \theta)^{\circ}$, vertical aperture 4 mm . The intensity-standard reffection (068) was monitored ever 1800 s ; intensity variation ($\pm 5 \%$) during the data collection. The prescan speed was $10^{\circ} \mathrm{min}^{-1}$. The final scan was not applied for reflections where $\sigma(I) / I$, determined after the prescan, lay outside the interval $(0 \cdot 05,1)$. The maximum final-scan measurement time was 30 s .

3057 reflections were measured up to $\theta=30^{\circ}(0 \leq$ $h \leq 14,0 \leq k \leq 14,0 \leq l \leq 23$); i.e. 2776 unique

[^0]: (c) 1991 International Union of Crystallography

[^1]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53311 (61 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * To whom correspondence should be addressed.

